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Overview

- Precision Medicine Initiative

- Monogenic vs. polygenic traits

- Review of prediction methods

- Poly-Omic integration: OmicKriging

- Role of regulatory variants in complex traits
- PrediXcan

- Prediction of gene expression traits
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Precision Medicine

- Obama: Precision Medicine Initiative $215M for 2016 Budget

Instead of “one-size fits-all-approach”

“Right treatment, at the right time to the right person”

- Innovative approach to disease prevention and treatment based
on individual differences in genes, environments, and lifestyles

http://www.whitehouse.gov/the-press-office/2015/01/30/fact-sheet-president-obama-s-precision-medicine-initiative
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Precision Medicine Implementation
"~ Dissection

Disease - Etiology of complex

risk stratification traits

Mechanism by which
genetic variation drives
phenotypic variation

iIntervention strategies
- Adverse events

Efficacy of treatment Druggable targets
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The Promise of the Human Genome Sequencing Project

- In year 2000, president Clinton announced the completion of
the first draft of the human genome, which would "revolutionize
the diagnosis, prevention, and treatment of most, if not all,
human diseases.

- Francis Collins predicted that diagnosis of genetic diseases
would be accomplished by 2010 and that treatments would start

to roll out perhaps by 2015.

- Why are we not there yet?
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The Promise of the Human Genome Sequencing Project
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Monogenic vs.
Polygenic Architecture



Genetic Architecture of Complex Traits
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Genetic Architecture of Complex Traits
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Genetic Architecture of Complex Traits

Single Variants Not Relevant for
Highly Polygenic Traits

@ F1.4%110 Translating Genomics



Nature 2008



Whole Genome
Prediction Methods



Additive Genetic Model
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Simple Polygenic Score

Nature 2009

Univariate
Regression
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Best Linear Unbiased Prediction (BLUP)/Ridge

AJHG 2011

Penalized regression
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LASSO/Elastic Net Prediction

J. R. Statist. Soc. B (2005)
67, Part 2, pp. 301-320

Regularization and variable selection via the
elastic net

Hui Zou and Trevor Hastie Penalized regression
Stanford University, USA
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Whole Genome Prediction Approaches

M M
Y:Zﬁ,ka+25,§Xk+e
k=1 k=1

By ~ N(0,07)
B ~ N(0,0%)

MultiBLUP: improved SNP-based prediction for complex traits
Doug Speed and David J Balding

Genome Res. published online June 24, 2014
Access the most recent version at doi:10.1101/gr.169375.113
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OmicKriging:
Integration of Multiple Omics
Data

Genetic Epidemiology 2014



What is Kriging?

Physical variable
(ex. rainfall)

&3

Prediction by kriging @= wi + w2’+ w3

Closer locations get
larger weights

Locations

Physical proximity

Y

Physical similarity
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What is Kriging?

Physical variable
(ex. rainfall)

&3

—

Complex trait
(ex. height)

BSOS
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Prediction by kriging ®= wi + wz‘

Closer locations get
larger weights

>

Locations

Physical proximity

v

Physical similarity

>

More related |nd|V|duaIs
get larger weights

Individuals

Omic proximity

v

Phenotypic similarity
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Galton’s Height Data

Hanley JA: Transmuting Women into Men. The American Statistician 2004, 58:237243.
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Galton Was Kriging with Kinship Matrix (1885)
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Kriging = BLUP (Best Linear Unbiased Prediction)

- Galton (1885): parent to offspring
- Fisher (1918) and Wright (1921): pedigree

- Formalized by Henderson (1950,1975) and Goldberger
(1962)

- G-BLUP: genetic relatedness estimated using genotype

- BLUP/Kriging can be interpreted as the posterior mean
of the genetic component given observations (Y = G +
error)
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Kriging = BLUP (Best Linear Unbiased Prediction)

- Galton (1885): parent to offspring
- Fisher (1918) and Wright (1921): pedigree

- Formalized by Henderson (1950,1975) and Goldberger
(1962)

- G-BLUP: genetic relatedness estimated using genotype

- BLUP/Kriging can be interpreted as the posterior mean
of the genetic component given observations (Y = G +
error)

BLUP/Kriging translates genetic similarity
into phenotypic prediction
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Polyomic Model
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Optimal Similarity Matrix
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Application of OmicKriging to Cellular Growth

- Intrinsic cellular growth phenotype (Im et al 2012 PLoS
Genetics)

- Genes associated with iGrowth are prognostic of
survival in cancer patients

- Multiple omics data
- 99 HapMap cell lines (CEU and YRI)
- Genotype, mRNA, microRNA
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Application of OmicKriging to Cellular Growth

MRBNA + microRNA

™M — / o — / o — /

mMRNA R2=38% ’ microRNA R2=35% ’ MRNA+microRNA R2=48% .~
/

Predicted iGrowth
Predicted iGrowth
Predicted iGrowth

True iGrowth True iGrowth True iGrowth

@ F1.4%110 Translating Genomics



Application to Wellcome Trust Case Control Consortium

- WTCCC

- 7 disease cases and 2 control sets:

- Coronary Artery Disease (2000)

- Hypertension (2000)

- Type 2 Diabetes (2000)

- Bipolar Disorder (2000)

- Crohn’s Disease (2000)
Rheumatoid Arthritis (2000)

- Type 1 Diabetes (2000)
1958 Birth Cohort (1500)
UK National Blood Services (1500)
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GWAS hits vs. Whole Genome Prediction (OmicKriging)
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GWAS hits only

Ridge/G-BLUP

OmicKriging
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OmicKriging R Package
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OmicKriging
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Summary OmicKriging

- OmicKriging is a systems approach to complex trait
prediction that leverages and integrates multiple omic
data

- We can attain relevant prediction even if we do not know
the individual variant’s contribution

- Important tool for integrating the vast amounts of data to
be generated with the precision medicine initiative
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Role of Reqgulatory
Variation in Complex
Traits



Mechanism of Genotype to Phenotype Link

- Most trait-associated SNPs are not coding

- Mechanism via regulation of gene expression levels
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Altered Protein Levels Influences Disease Risk

Albert & Kruglyak 2015 NGReviews
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PrediXcan

Nature Genetics - under revision



Motivation for PrediXcan

- Lack of mechanistic understanding of most GWAS discoveries
- Large proportion of variation explained by regulatory variants

- We propose PrediXcan that tests the proposed mechanism
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Genetic Control of Disease Through Gene Regulation

Disease

G e tG) e t(G) +e == Status

Affécted

Unaffected

Genetic Genetically
Variation Determined Disease Liability
Expression
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Mechanisms Tested by PrediXcan

PrediXcan

GReX

Genetically regulated
expression

Trait
Trait-

altered
Other component

factors

Gene Expression Decomposition
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PrediXcan uses Reference Transcriptome
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PredictDB: Public Database of Weights for GReX
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PrediXcan Imputes Transcriptome & Tests Assoc.
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PrediXcan: Mechanism-driven Gene-Based Test

Directly tests the molecular mechanism through which
genetic variants affect phenotype

- Genes more attractive than genetic variants
- Alot is known about their function
- Follow up experiments can be easily devised
- Reduced multiple testing burden

Direction of effects

- Positive effects: down regulation is therapeutic option
- Negative effects: more likely to harbor deleterious rare variants

- No reverse causality issues

- Can be systematically applied to existing GWAS studies

Tissue-specificity can be inferred
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Reference Transcriptome Data

- GTEX - Genotype of Tissue Expression
- Large scale Common Fund project
- 900 organ donors
- 45 tissues
- RNAseq, whole exome seq, whole genome seq

- GEUVADIS

- RNAseq 462 individuals from the 1000 Genomes
Project

- Cerebellum expression (Array GSE35974)
- Framingham, n>5000m, whole blood

- Depression Genes & Networks, n>900, whole blood
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Good Prediction Performance

Prediction RA2 Replication RA2

Training with GTEx ACRIEELE [RNa5e

Pickrell et al 2010 vs.

Testing in 1K Genomes 1K Genomes 2013

Sahar Mozaffari
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Examples of Well Predicted Genes
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Genes Associated with Rheumatoid Arthritis
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PrediXcan Results for Crohn’s Disease and Hypertension

IRGM is a known Whole blood may not be
Crohn’s gene relevant tissue
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PrediXcan Outperforms VEGAS

Eric Gamazon
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Enrichment of Known Crohn’s Genes Among Findings

100 gqgplot with
random samples of
205 genes

Above this line
implies enrichment
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No Enrichment Among Hypertension Findings

100 qgplots with
random samples of
133 genes

Above this line
would imply
enrichment

Whole blood may not be
relevant tissue

@ F1.4%110 Translating Genomics



PrediXcan: a Gene Discovery Approach

- PrediXcan is a powerful gene based association test

- It directly tests the molecular mechanism through which
genetic variants affect phenotype

- Reduced multiple testing burden compared to single variant approach
- Unlike other gene based tests, it provides direction of effects

- Advantages relative to gene expression studies

- Applicable to any GWAS datasets
gene expression levels are predicted from genotype data

NoO reverse causality
disease status does not affect germline DNA

Multiple Tissues can be evaluated
tissue expressions are only needed to build prediction models
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Prediction of Gene
Expression Traits



Genetic Architecture to Improve Prediction

- Local and distant regulation (heritability)

- Sparsity/Polygenicity

- This information guides us to improve prediction, i.e. estimates
of GReX
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Local/Distant Heritability Estimation

Gene expression trait model

VY — Z 5}1{0(:&le 4 Z 52istanth 1€

local distant

REML to estimation of local and distant contributions jointly
Covariance of local component: GRM using SNPs nearby
Covariance of distant component: GRM using distant SNPs
We use GCTA as REML calculator

Total Heritability = Local H2 + Distant H2

@hakyim Cis/Trans Heritability of Gene Expression Traits



Whole Blood Expression Data: DGN

Battle et al. “Characterizing the genetic basis of transcriptome
diversity through RNA-sequencing of 922 individuals.” Genome
Research 2014, 24(1):14-24

Whole blood from Depression Genes and Networks study
- n=922
- RNA-seq

@ F1.4%110 Translating Genomics



Local Heritability Can Be Well Estimated
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Distant Heritability Not Reliable
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Proportion of LASSO to Ridge as Measure of Sparsity

- Only local component can be assessed

- LASSO performs slightly better than E-N 0.50 in cross validated
R2
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Performance vs sparsity

Heather
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E-N & LASSO Outperform Polygenic Score

@ F1.4%110 Translating Genomics



Whole Blood DGN (n=922) + 38 GTEXx Tissue Models
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Challenges in
Pharmacogenomic
Predictions



Pharmacogenomic Findings

Evidence

Level Counts %
1a 40 3
1b 17 1
2a 96 6
2b 74 )
3 1175 76
4 145 9

Total 1547 100

Only Level 1a findings have

https://www.pharmgkb.org/ clinical guidelines
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Challenges of Pharmacogenomic Studies

- Smaller sample size

- Even more important to integrate prior data

Integrate other functional data

Heritability estimates are harder
Limited family data
Usually samples greater than 1K are needed for GCTA
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Bevacizumab Induced Hypertension

- Bevacizumab is a humanized monoclonal antibody that inhibits
VEGF induced angiogenesis

- Hypertension is a common adverse event to bevacizumab
treatment

- The incidence of hypertension with bevacizumab is 20-30%,
while grade 3 or greater hypertension occurs in only 10-15% of

patients.

Keston Aguino Michaels
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Bevacizumab Trials

- CALGB 90401

- a randomized double-blinded placebo controlled phase lli trial
comparing docetaxel and prednisone with and without
bevacizumab in men with hormone refractory prostate cancer

- n =664 (with genotype data after QC)
Pl: Howard McLeod
- CALGB 80303

- a randomized phase Il trial of gemcitabine plus bevacizumab

versus gemcitabine plus placebo in patients with advanced
pancreatic cancer

n = 152 (with genotype data after QC)
Pl: Federico Innocenti
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Bevacizumab Induced Hypertension

- Is primary hypertension risk score predictive of bevacizumab
iInduced hypertension

Hypertension results from Cross Consortia Pleiotropy group
(n~20K)

- Can we predict drug induced hypertension?

- 90401 training set
- 80303 test set

Keston Aguino Michaels & Heather Wheeler
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Primary Hypertension Score Predicts Bev-induced HT
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Bev-Hypertension Predicted Within Study

1.0

True positive rate
0.6

0.4

0.2

AUC =0.71

Two steps LASSO
+Random Forest

Cross Validated in
Training Set

0.0 0.2 0.4 0.6

False positive rate

0.8 1.0

Keston Aquino Michaels
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Bev-Hypertension Predicted in Independent Study

AUC = 0.68

Two steps LASSO
+Random Forest

Validated in
Independent Set
AUC down to 0.68 from 0.71

Keston Aquino Michaels
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Bev-Hypertension Predicted in Independent Study

True positive rate
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Summary Pharmacogenomics

- Most single variant findings have limited clinical utility
- Whole genome approaches to prediction improves utility

- Bevacizumab induced hypertension example

primary hypertension results help in predicting drug induced
hypertension

- successfully predicted bevacizumab induced hypertension in
Independent study

- combining primary + bevacizumab induced HT leads to
Improved prediction

@hakyim Pharmacogenomics Beyond Single Variants



- Shift from monogenic to polygenic paradigm

- Systems approach to genomics
Most single variant findings have limited clinical utility
Whole genome approaches to prediction improves utility

- Larger sample sizes will be needed, 1Million+

- OmicKriging: prediction method that integrates heterogeneous
sources of data well suited for data from the Precision Medicine
Initiative

- Large role of regulation variants in complex traits
- PrediXcan: novel gene based test that test mechanism

- Prediction of gene expression traits
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Conclusion

- recognizing the complexity of the genetic architecture and
mechanisms of genetic control,

- collecting deep phenotype data from large number of
individuals,

- brodly sharing data and results, and
- integrating multiple sources of data

- using mechanism-driven tests

We will achieve the promise of precision medicine
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Lipid Markers AUC

Manickam et al 2011 J Clinical Lipidology

LDL AUC ~ 0.52

HDL AUC =0.60
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